Madrid es España dentro de España


Felipe E. Ramirez PhD – 06.2021

El título de este artículo es bien conocido por los españoles y especialmente por los madrileños que siguen algo la vida política. Fue una frase pronunciada por la Presidenta de la Comunidad de Madrid Isabel Díaz Ayuso en abril de 2021, y fue repetida hasta la saciedad por unos y otros como si de un simple retruécano se tratara; para unos la frase rozaba el absurdo, para otros era una simple hipérbole de la Presidenta.

Pero para un matemático es una sentencia que no debe tomarse a la ligera ya que su valor de verdad depende de un nuevo epíteto con el que la Presidenta ha regalado a España: la infinitud.
Así que aquí va un comentario matemático a la aseveración de la política que carece de todo pudor matemático.

Algunas consideraciones elementales

España” es el país al que nos referimos con ese nombre. “Madrid” es la Comunidad Autónoma del mismo nombre y en cuyo territorio se encuentra la capital de España. Y aunque todos los lugares de Madrid lo son de España, al menos hay un lugar en España que no es Madrid, por ejemplo, Santa Cruz de La Palma, en matemáticas decimos que “Madrid” es una “parte propia” de España o que “Madrid está contenido propiamente en España” o de forma algo más imprecisa, que “Madrid está incluido en España” o que “España incluye a Madrid”; y lo representamos de un modo muy sencillo: si S representa al conjunto “España” y M a “Madrid”, escribimos “M c S”.
Somos así, nos gustan los símbolos.

Por tanto, es obvio que Todo lo que sea atribuible a la Comunidad de Madrid es un atributo de una parte de España, pero no al contrario. Por ejemplo “tener mar” no es un atributo de Madrid, pero sí de España. En cambio “El Peñalara es una montaña española” es tan verdadera como decir que “El Peñalara es una montaña madrileña”. Muy sencillo, es teoría básica de conjuntos. 

Hasta aquí nada revelador. Ahora introduzcamos intuitivamente el concepto de tamaño de un conjunto, signifique eso lo que lo que sea de un conjunto como S o M. No se cómo mediremos los tamaños de los conjuntos, pero seguro que acaba siendo una cuestión de números.

El todo es mayor que la parte

Aristóteles

Estaremos todos conformes en decir que M es más pequeño que S o que M tiene menos elementos que S, si puedo emparejar a cada elemento de M con otro de S y no agoto todos los elementos de S, de los que me sobrarán elementos no emparejados. En cambio, al realizar ese emparejamiento, todos los elementos de Madrid quedarán emparejados.  Este procedimiento es el que nos lleva a decir cosas triviales como que “tengo menos de 10 caramelos en el bolsillo” si al emparejarlos con los dedos de las manos me sobran dedos.

Estas ideas intuitivas y la aparición de los términos “Todo” y “Parte” llevaron a Aristóteles, y con él a toda la Humanidad, a tomar como Principio Universal que: “El todo es mayor que la parte” escrita de muchas otras formas. Nunca hubo discusión sobre la veracidad de esta sentencia: todos decimos al oírla: “Pues claro, es pura lógica”. Aceptar dicho principio como una Verdad Universal es lo “normal”. Y así fue desde al menos los tiempos del estagirita. Así nadie niega que el agua de los ríos de Europa es menor que el agua de los ríos del mundo, que los dedos de las manos son menos que los dedos del cuerpo humano, que los estadounidenses que hablan español, son menos que todos los estadounidenses. Y así cientos y cientos de ejemplos.

Es tal la confianza que depositamos en la regla anterior que históricamente cuando algún científico, matemático o filósofo se ha encontrado en una tesitura en la que parecería que la parte fuera mayor que el todo, el científico, matemático o filósofo se apresuraba en negar la causa que le habría llevado a aceptar dicha falacia universal. Por ejemplo, el osado, irreverente y gran cuestionador de la autoridad, Galileo Galilei se apresuró a desmentirse cuando se vio forzado a aceptar que el todo no es necesariamente mayor que la parte[1]. Es un anatema científico, pero sólo bajo un prisma clásico.

De este modo si nuestro planteamiento es clásico –que no erróneo- la sentencia pronunciada por la política madrileña “Madrid es España dentro de España” viene a concluir que la parte (Madrid) tiene en su interior (dentro de sí) al todo (España). Y siendo Madrid una parte propia de España, la conclusión es necesariamente falsa, de modo que la presidenta no puede decir la verdad porque todos sabemos que el todo ha de ser mayor que la parte, y si el todo (España) a su vez está en la parte (Madrid), parece que nuestra regla se viene abajo; y como Galileo, quizás debamos negar la mayor antes que asumir que pueda darse semejante aberración intelectual. ¿Cómo no a va a ser el todo mayor que una parte?

Punto de vista moderno

Todo lo anterior es correcto si agregamos un sólo atributo –que todos damos por sentado- pero que es determinante para nuestras conclusiones: finito . Si en lo anterior la parte es “finita” y el “todo” es “finito” aunque pueda ser muy grande, la regla aristotélica es verdadera siempre: “El todo finito siempre es mayor que cualquiera de sus partes propias”

Es aquí donde surge la modernidad, el progreso humano en versión revolucionaria que aparece para romper moldes y reglas. Esto ha sucedido muchas veces a lo largo de la historia de las matemáticas, un espacio de conocimiento donde la revolución siempre ha encontrado acomodo. Y de esta forma así pasó hacia el último tercio del siglo XIX en el que se llegó a fundamentar la necesidad de considerar que incluso el Todo ha de ser mayor que la Parte no tiene por qué ser verdadero. Cuando en matemáticas se monta una revolución, es completa y arrasa con todo lo que sea necesario.

Por lo pronto hubo que definir el concepto de “infinito” desde un punto de vista netamente matemático y no filosófico; así se hizo y de varias maneras equivalentes. Una de las definiciones más concisas de infinito que se forjaron fue justamente la que diera George Cantor y es la que ocupa este artículo.

Lo que distingue un conjunto finito de uno que sea infinito es que en el primero la Regla Universal aristotélica se cumple y “El Todo siempre es mayor que la Parte”, mientras que, lo que hace especial a un conjunto infinito, es que el principio lógico aristotélico no se cumple en él y hay partes propias que son iguales al todo (al que pertenecen).

Por tanto: aceptar esta regla anti-lógica o anti-intuición es lo que basta para distinguir un conjunto finito de uno infinito.

Los conjuntos infinitos son exclusivos porque en ellos nuestra “lógica humana” no funciona adecuadamente.

Las reveladoras líneas anteriores son las que dotan de auténtico valor a la sentencia de la Presidenta: “Madrid es España dentro de España” porque lejos de ser una falsedad, el auténtico sentido de la frase es enorme:

Madrid y España son ambos infinitos. Sólo así puede ser que una parte sea como el todo.

Aún más, la escueta frase de la política es una rigurosa definición de Madrid, y por ende de España, nada menos que como conjuntos infinitos: la Presidenta podría firmar un teorema que dijera: “España es infinita y tiene en su interior a Madrid que también lo es”.

Aún así, nos quedaría pendiente por determinar si la garantizada infinitud de Madrid es del mismo tamaño que la infinitud de España. Seguro que en breve la Presidenta encontrará respuesta para ello.


[1] Este problema le surgió a Galileo al comparar la serie de los números enteros y la de los cuadrados perfectos. 

Un comentario sobre “Madrid es España dentro de España

  1. Much vidilla nos va a dar la Ayuso esa, mucha…

    Federico Herrero ASOCIADOS & CIA http://www.asocia2.es Mov. 609.908.332

    De: Maths Trainning Center 4All Responder a: Maths Trainning Center 4All Fecha: martes, 8 de junio de 2021, 15:22 Para: Federico Herrero Asunto: [Nueva entrada] Madrid es España dentro de España

    WordPress.com Math+massium Team publicó:” Madrid es España dentro de España Felipe E. Ramirez PhD – 06.2021 El título de este artículo es bien conocido por los españoles y especialmente por los madrileños que siguen algo la vida política. Fue una frase pronunciada por la Presidenta” Responder a esta entrada realizando el comentario sobre esta línea Entrada nueva en Maths Trainning Center 4All Madrid es España dentro de España por Math+massium Team El título de este artículo es bien conocido por los españoles y especialmente por los madrileños que siguen algo la vida política. Fue una frase pronunciada por la Presidenta de la Comunidad de Madrid Isabel Díaz Ayuso en abril de 2021, y fue repetida hasta la saciedad por unos y otros como si de un simple retruécano se tratara; para unos la frase rozaba el absurdo, para otros era una simple hipérbole de la Presidenta.

    Pero para un matemático es una sentencia que no debe tomarse a la ligera ya que su valor de verdad depende de un nuevo epíteto con el que la Presidenta ha regalado a España: la infinitud. Así que aquí va un comentario matemático a la aseveración de la política que carece de todo pudor matemático.

    Leer más de esta entrada

    Math+massium Team | 8 junio, 2021 a las 3:22 pm | Etiquetas: Conjuntos, IDA, Infinitos, Madrid es España | Categorías: Artículos, MathPolitik, para meditar | URL: https://wp.me/paAbNj-RE

    Me gusta

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Salir /  Cambiar )

Google photo

Estás comentando usando tu cuenta de Google. Salir /  Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Salir /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Salir /  Cambiar )

Conectando a %s