Geometría variable


Felipe E. Ramirez PhD – 06.2021

Madrid variable. (Madrid) – FRM 2019.

No soporto la invasión de competencias, el intrusismo, sea del tipo del que sea, incluido el puramente semántico. Son ya algunas las entradas que dedico en este blog a mostrar cómo los políticos conjugan de forma errónea los verbos matemáticos.

Hoy me gustaría referirme a todo un “clásico” en los mensajes de políticos que son matemáticamente aberrantes. Se trata de la expresión “geometría variable” que seguro todos los lectores recuerdan haber oído alguna vez en los últimos ¿años? pronunciado por algún representante de la soberanía popular de cualquier signo, porque en esto de las falsas metáforas matemáticas no existe el color.

La expresión resuena en los labios de los más cultos ponentes políticos: introducir el término “geométrico” en el lenguaje de las ideologías, las leyes, las normas o los discursos eleva sin duda el cariz del mismo. Es lo que yo denomino el  Mathematical Power que debería patentarse, si no lo está ya.

El silogismo parece sencillo: si la ciencia obedece los dictados de las matemáticas ¿por qué no hacerlo con la política?. Así “La correlación de fuerzas lleva a un contexto de geometría variable”, “El Sr Presidente [de algo] juega con la geometría variable”, “Nuestra propuesta obedece a una geometría variable” o  “Los resultados electorales obligan a que el vencedor deba usar la geometría variable…”.

Es una tomadura de pelo a la Geometría y a la Variabilidad.

Las geometrías

Mis lectores saben que soy matemático, las enseño. Estudié Matemáticas Fundamentales, vamos, la Teoría dentro del Universo de las Teorías. Conozco y he estudiado muchas Geometrías:

axiomática, lineal, afín, hiperbólica, elíptica, euclídea, algebraica, vectorial, diferencial, proyectiva, sintética, métrica, topológica, compleja, intuitiva, intrínseca o fractal

pero en mi catálogo no existe eso de Geometría Variable

Aunque creo saber aquello a lo que los intelectualmente audaces políticos se refieren cuando pronuncian las palabras mágicas. Qué digo audaces, atrevidos, porque

la audacia no va acompañada de la ignorancia, pero el atrevimiento suele ser fruto del desconocimiento.

Los políticos toman prestada una referencia matemática para dignificar su mensaje, cuando sólo quieren decir, que

“[…] el Ejecutivo actuará y se coaligará, según las circunstancias“.

Verán por qué suena ridícula la expresión en boca de un político. Por que ¿qué es la geometría variable?

El espacio en unas pocas líneas

El espacio o la concepción que de él disponemos, nos gusta que sea isotrópico: idéntico en cualquier lugar, sin direcciones privilegiadas. En ese universo, se usan las mismas reglas de medir con independencia del lugar en el que un observador se encuentre: usará siempre los mismos trasportadores de ángulos, su escuadra y su cartabón en todos los lugares serán los mismos para medir el espacio y conocerlo en alguno de sus aspectos. Es Geometría No Variable.

Este es el espacio más sencillo que imaginamos. Es lineal. Es el espacio de Euclides o de Newton. Pero hay otros tipos de espacios: los espacios curvos.

Ya empezamos -dirá el lector- con las curvaturas espaciales. Tranquilidad, para entender la idea basta con visualizarlo en dos dimensiones. En tres le costaría más imaginarlo y la idea es la misma. (¡Total, una dimensión más!)

Geometrías locales

Imaginemos una silla de montar a caballo de cuero bruñido y delgada como una hoja de papel.   Su forma es una superficie que los matemáticos adoramos por muchas y muchas de sus propiedades, lo llamamos paraboloide hiperbólico.

En cada punto de dicho espacio –como es suave- construimos un plano tangente, como en las obras, un armazón plano. Y con ese plano, si habitáramos alrededor de ese punto, nuestra medida de él sería isotrópica, igual en todas partes.

Paraboloide hiperbólico

Omitamos el exterior de la silla de montar. Seamos un punto C del cuero de la ensilladura. C no puede ni pensar en los planos tangentes, porque éstos se extienden en el espacio exterior de la silla de montar, un espacio inimaginable para C. Cuando C se uniera por el camino más corto con otros puntos de la misma silla, no lo haría a través de rectas sino de curvas; si lo piensas, no tiene sentido hablar de “rectas” en el seno de la montura. Pero los matemáticos descubrimos que hay trayectorias que son las más cortas a lo largo de una superficie curva: las llamamos geodésicas.

De algún modo la geometría de la silla de montar es variable. Aun así, la regularidad de dicha superficie lleva a que en puntos diferentes la “geometría local” se comporte de modo similar. Por ejemplo, el tipo de curvatura que medirían sus habitantes si pudieran hacerlo, del espacio que se halla a su alrededor sería la misma.

Las escaleras de caracol no son así porque sí: son geodésicas de un cilindro que es la torre por la que se asciende.

Escalera de la torre del faro del cabo de la Nao. (Alicante). LolitaBrain 2017

Así que aquí tenemos un caso de cierta geometría variable. Podríamos estar tentados a reconocer que:

Si el universo es curvo, ¿no puede ser isotrópico.? ¿O sí?


[Paciencia pido al lector en este punto que seguir leyendo más no quiere]

Es decir, ¿es posible encontrar superficies isotrópicasiguales en todos las direcciones- pero curvadas, de modo que en cualquier lugar encontraríamos las mismas propiedades geométricas. La respuesta es sencilla: pues claro, vivimos en una Tierra esférica y por tanto todos sus trozos son equivalentes:

si se recorta un trozo cualquiera de una pelota de playa, se podrá colocar en cualquier otro lugar de la misma.

Todos los puntos de la pelota se comportan de igual forma.

La razón de esto es que la curvatura de la esfera es constante en todos sus puntos. De modo que, aunque la geometría local de cada punto es peculiar, en el fondo es la misma en todos ellos.

Si una superficie manifiesta regularidades, patrones o simetrías o es rectificable o es de algún modo geométricamente homogénea, es decir presenta curvaturas constantes en algunas direcciones, las geodésicas son curvas de tipos parecidos en todos sus puntos. En un cono, un cilindro o un donut, sabemos cuáles son las rectas que determinan la geometría de cada punto. Y no depende del punto.  

A finales del siglo XIX el genial B. Riemann tomó clara conciencia del significado estas ideas que esbozadas aquí toscamente parecen sencillas. Su tesis la explicó nada menos que ante G.F. Gauss, su director; sólo de pensarlo asusta. Porque es el mismo Gauss que había determinado como calcular la curvatura de una superficie desde ella misma, sin salir al exterior para medirla; es lo que llamamos su geometría intrínseca.

Pero la creación de Riemann –entre otros atributos- era sorprendente: encontró los mecanismos para estudiar el comportamiento local de cualquier tipo de superficie, regular o no.

Se definió lo que podemos denominar una geometría riemanniana diferencial local sobre una idea sencilla, audaz y temible: tómese un punto y las matemáticas le proporcionan las reglas para que mida en su derredor; será una geometría igual en cuanto a las leyes Globales, pero con identidad particular en cada punto. 

Y salvo para los matemáticos las cosas quedaron ahí. Pero unos treinta años después de que Riemann leyera su tesis, nació un niño llamado Albert, de apellido Einstein que con el tiempo sería el físico que vino a revolucionarlo todo. Lo curioso es que cuando Albert solicitó un modelo geométrico en el que sus ecuaciones físicas pudieran tener sentido, encontró que ya existía desde hacía años: el modelo buscado se hallaba en la geometría de Riemann: era el perfecto acomodo para dar forma a su teoría.

La auténtica geometría variable

Según la Relatividad General -no es menester ahora introducir el famoso tiempo – el Universo es lo más alejado a la isotropía que pueda imaginarse.  La forma del universo, el modo en el que se curva, como la silla de montar, viene determinada por la masa que se acumula en cada lugar del espacio, es decir por la Gravedad. La existencia de la masa altera la forma del espacio. Y es esta forma la que determina su Geometría. Este espacio no puede disponer de leyes idénticas en todos sus puntos, pero por supuesto obedecen a las mismas Leyes Generales que los Humanos hemos descubierto hasta la fecha.

Así pues, es la Relatividad General la que nos lleva al concepto físico de una Geometría Variable

De modo que cuando oiga a un político hablar de geometría variable, piense que sólo se refiere a la posibilidad de realizar pactos a ambos lados de su eje político según la conveniencia del momento. Nada más.

Por favor, no usen las Matemáticas para las trivialidades.
Así que cuando oiga a un político hablar de geometría variable, piense que sólo se refiere a la posibilidad de realizar pactos a ambos lados de su eje político según la conveniencia del momento. Nada más.

just some light dots

Piedra marina (Costa da Morte. 2019). FRM.
Amanece en Fort-Sand (Arizona. 2019) Picture from ISS

mirar el universo siempre nos perturba.

lo lejano se hace cercano y lo cercano se aleja de nuestros ojos.

no siempre resulta sencillo distinguir lo inmenso de lo minúsculo.

sin referencias, nuestro mundo sensorial se viene abajo.

continous chimneys

Near Bridgewater Canal (Manchester. 2018). Lolita Brain.

¿por qué obstinarnos en normalizar la realidad cuando ella aprovecha cada posibilidad para transmutarse?

Las viejas y erectas chimeneas de la próspera e industrial Manchester se comban, cimbrean y deforman bajo el efecto de la luz sobre planos especulares.

Encuentran así un modo de cambiar a pesar de parecer inertes.

Sólo lo medible es alcanzable


Felipe E. Ramirez PhD – 06.2021

Este artículo está dedicado a la frase que le da título y que pronunció el Presidente del Gobierno de España en mayo de 2021 en la presentación de la Agenda España 2050. La frase pasó sin que los medios se hicieran eco de su significado profundo. Probablemente porque no dejaba de ser un enunciado más en un discurso de autobombo político. Pero es una frase muy interesante que no debe tomarse a la ligera.  Aquí va un comentario científico a la aseveración de otro político que se sumerge en los mares de la ciencia

Lo que P.S. dijo

La sentencia presidencial se pronunció en un acto público dedicado a exponer las líneas maestras de la política española con el objetivo de alcanzar una serie de metas dentro de treinta años: Agenda 2050.  Con ella el Presidente quería incidir en la necesidad de analizar, contrastar, meditar, sopesar, proponer, evaluar etc. lo que se desea proyectar a futuro si se tiene voluntad de alcanzarlo.

Lo medible y lo alcanzable


Alcanzar es un término que usamos en matemáticas con mucha frecuencia, especialmente desde que existe el cálculo infinitesimal. Es un verbo que nos gusta porque alude a la posibilidad de estar cerca, tan cerca cómo sea deseable de algo aunque se conozca de antemano la imposibilidad de alcanzarlo efectivamente. En matemáticas hemos aprendido hace mucho a estar próximos a un punto geométrico, a un número o a una curva. Estas entidades inalcanzables son de una u otra forma singularidades: monstruos que devoran lo que recorre sus cercanías. A menudo la realidad se obstina en no desvelarse por completo y nuestro conocimiento sólo puede ser aproximado; nuestra virtud es que somos capaces de estimar y precisar el error

Somos capaces de cuantificar lo cerca que nos encontramos de un valor numérico necesario para algún cálculo. Nos encanta ayudar a otros científicos a que pongan cota, a que limiten el valor de un determinado error para poder evaluar su influencia en el resultado esperado.

Así ensoñamos que controlamos el error.

La física nos proporciona un magnífico ejemplo. Como sabemos desde Einstein (1905), la velocidad de la luz (c) es un límite a la velocidad de todo objeto en el Universo. No sabemos nada de la velocidad de los no objetos.

Nada puede viajar a mayor velocidad que la luz.

Si aceptamos la Relatividad y sus ecuaciones, alcanzar dicha velocidad es ontológicamente imposible, ya que sabemos que la masa del cohete aumenta sin cesar, mientras su longitud se acorta cada vez más al acercarse a c.

Así pues, podemos medir con una precisión exquisita la velocidad a la que se propaga la luz, pero no podemos alcanzar dicho valor. Esto es un ejemplo de que no hay garantía de alcanzar algo por el hecho de haberlo medido.

Hace más de 2500 años el pitagórico Hipaso de Metaponto, descubrió la irracionalidad de raíz de 2 (√2); abrió la caja de los truenos. El Hombre fue consciente de que parte de la realidad era inalcanzable para su mente, que la realidad no se deja aprehender, así como así. La irracionalidad de un número nos dice que es imposible tenerlo todo él; sólo podemos tener al número en potencia, pero no en acto ya que se nos prohíbe acceder a todos los misterios que encierran sus infinitas cifras decimales. Así que no nos queda otro remedio que acercarnos a su auténtico valor a sabiendas de que será una misión fracasada en su inicio.

Este es el segundo contraejemplo a la aseveración del Presidente: raíz de dos es medible, construible con regla y compás, localizable en una recta, pero es inalcanzable.

Vemos por tanto que existen entidades que medimos, pero que no alcanzamos.

Pero es que hay otras que alcanzamos sin haberlas medido. La Humanidad alcanzó América sin tener ni idea de las medidas reales ni de los océanos ni los continentes. 

La famosa Ley de Gravitación Universal de Newton estuvo coja durante muchos años porque no se disponía del valor de la constante de Gravitación Universal G, crucial para usar la ley con todo su poder. Así pues, fuimos capaces de alcanzar resultados asombrosos que quedaban manifiestos en la ley de Newton sin haber medido G. No es una excepción.

Otro caso. El área que queda bajo una campana de Gauss mide exactamente una unidad de superficie, pero es una superficie inalcanzable porque es una región infinita. Disponemos pues de la medida, pero no de la capacidad de alcanzar el objeto medido. 

Si para los humanos los límites de la realidad dependieran de lo que es o no es medible para de esa forma desterrar lo no medible por inalcanzable, la Humanidad habría estado en un largo letargo rodeado de universos desconocidos.

Epílogo

Podemos humildemente corregir al Presidente y proponer que la medida ni es suficiente ni es necesaria para alcanzar algo.  Es una ayuda más, pero sólo eso. Medir nos allana el camino para alcanzar objetivos, pero no nos lleva necesariamente a su consecución.

Parece oportuno recordar lo que dijera el ingeniero e innovador constructor de maquinaria de precisión, Joseph Whitworth (1803-87):

You can only make as well as you can measure.

Joseph Whitworth
(1803-87)

Museo de Ciencia y Tecnología. Manchester.

Que no significa que sólo podamos alcanzar lo que medimos, sino que

nuestra medida del mundo está determinada por el instrumento que usamos. 

Una maravillosa versión analógica y continua del Principio de Incertidumbre de Heisenberg.

PD. Olvidaba el caso que más me asombra: El inalcanzable Cero Absoluto (0ºK ó -273 ºC) la temperatura a la que –teóricamente- el Universo se detiene. Pero eso es para otra entrada.

Madrid es España dentro de España


Felipe E. Ramirez PhD – 06.2021

El título de este artículo es bien conocido por los españoles y especialmente por los madrileños que siguen algo la vida política. Fue una frase pronunciada por la Presidenta de la Comunidad de Madrid Isabel Díaz Ayuso en abril de 2021, y fue repetida hasta la saciedad por unos y otros como si de un simple retruécano se tratara; para unos la frase rozaba el absurdo, para otros era una simple hipérbole de la Presidenta.

Pero para un matemático es una sentencia que no debe tomarse a la ligera ya que su valor de verdad depende de un nuevo epíteto con el que la Presidenta ha regalado a España: la infinitud.
Así que aquí va un comentario matemático a la aseveración de la política que carece de todo pudor matemático.

Algunas consideraciones elementales

España” es el país al que nos referimos con ese nombre. “Madrid” es la Comunidad Autónoma del mismo nombre y en cuyo territorio se encuentra la capital de España. Y aunque todos los lugares de Madrid lo son de España, al menos hay un lugar en España que no es Madrid, por ejemplo, Santa Cruz de La Palma, en matemáticas decimos que “Madrid” es una “parte propia” de España o que “Madrid está contenido propiamente en España” o de forma algo más imprecisa, que “Madrid está incluido en España” o que “España incluye a Madrid”; y lo representamos de un modo muy sencillo: si S representa al conjunto “España” y M a “Madrid”, escribimos “M c S”.
Somos así, nos gustan los símbolos.

Por tanto, es obvio que Todo lo que sea atribuible a la Comunidad de Madrid es un atributo de una parte de España, pero no al contrario. Por ejemplo “tener mar” no es un atributo de Madrid, pero sí de España. En cambio “El Peñalara es una montaña española” es tan verdadera como decir que “El Peñalara es una montaña madrileña”. Muy sencillo, es teoría básica de conjuntos. 

Hasta aquí nada revelador. Ahora introduzcamos intuitivamente el concepto de tamaño de un conjunto, signifique eso lo que lo que sea de un conjunto como S o M. No se cómo mediremos los tamaños de los conjuntos, pero seguro que acaba siendo una cuestión de números.

El todo es mayor que la parte

Aristóteles

Estaremos todos conformes en decir que M es más pequeño que S o que M tiene menos elementos que S, si puedo emparejar a cada elemento de M con otro de S y no agoto todos los elementos de S, de los que me sobrarán elementos no emparejados. En cambio, al realizar ese emparejamiento, todos los elementos de Madrid quedarán emparejados.  Este procedimiento es el que nos lleva a decir cosas triviales como que “tengo menos de 10 caramelos en el bolsillo” si al emparejarlos con los dedos de las manos me sobran dedos.

Estas ideas intuitivas y la aparición de los términos “Todo” y “Parte” llevaron a Aristóteles, y con él a toda la Humanidad, a tomar como Principio Universal que: “El todo es mayor que la parte” escrita de muchas otras formas. Nunca hubo discusión sobre la veracidad de esta sentencia: todos decimos al oírla: “Pues claro, es pura lógica”. Aceptar dicho principio como una Verdad Universal es lo “normal”. Y así fue desde al menos los tiempos del estagirita. Así nadie niega que el agua de los ríos de Europa es menor que el agua de los ríos del mundo, que los dedos de las manos son menos que los dedos del cuerpo humano, que los estadounidenses que hablan español, son menos que todos los estadounidenses. Y así cientos y cientos de ejemplos.

Es tal la confianza que depositamos en la regla anterior que históricamente cuando algún científico, matemático o filósofo se ha encontrado en una tesitura en la que parecería que la parte fuera mayor que el todo, el científico, matemático o filósofo se apresuraba en negar la causa que le habría llevado a aceptar dicha falacia universal. Por ejemplo, el osado, irreverente y gran cuestionador de la autoridad, Galileo Galilei se apresuró a desmentirse cuando se vio forzado a aceptar que el todo no es necesariamente mayor que la parte[1]. Es un anatema científico, pero sólo bajo un prisma clásico.

De este modo si nuestro planteamiento es clásico –que no erróneo- la sentencia pronunciada por la política madrileña “Madrid es España dentro de España” viene a concluir que la parte (Madrid) tiene en su interior (dentro de sí) al todo (España). Y siendo Madrid una parte propia de España, la conclusión es necesariamente falsa, de modo que la presidenta no puede decir la verdad porque todos sabemos que el todo ha de ser mayor que la parte, y si el todo (España) a su vez está en la parte (Madrid), parece que nuestra regla se viene abajo; y como Galileo, quizás debamos negar la mayor antes que asumir que pueda darse semejante aberración intelectual. ¿Cómo no a va a ser el todo mayor que una parte?

Punto de vista moderno

Todo lo anterior es correcto si agregamos un sólo atributo –que todos damos por sentado- pero que es determinante para nuestras conclusiones: finito . Si en lo anterior la parte es “finita” y el “todo” es “finito” aunque pueda ser muy grande, la regla aristotélica es verdadera siempre: “El todo finito siempre es mayor que cualquiera de sus partes propias”

Es aquí donde surge la modernidad, el progreso humano en versión revolucionaria que aparece para romper moldes y reglas. Esto ha sucedido muchas veces a lo largo de la historia de las matemáticas, un espacio de conocimiento donde la revolución siempre ha encontrado acomodo. Y de esta forma así pasó hacia el último tercio del siglo XIX en el que se llegó a fundamentar la necesidad de considerar que incluso el Todo ha de ser mayor que la Parte no tiene por qué ser verdadero. Cuando en matemáticas se monta una revolución, es completa y arrasa con todo lo que sea necesario.

Por lo pronto hubo que definir el concepto de “infinito” desde un punto de vista netamente matemático y no filosófico; así se hizo y de varias maneras equivalentes. Una de las definiciones más concisas de infinito que se forjaron fue justamente la que diera George Cantor y es la que ocupa este artículo.

Lo que distingue un conjunto finito de uno que sea infinito es que en el primero la Regla Universal aristotélica se cumple y “El Todo siempre es mayor que la Parte”, mientras que, lo que hace especial a un conjunto infinito, es que el principio lógico aristotélico no se cumple en él y hay partes propias que son iguales al todo (al que pertenecen).

Por tanto: aceptar esta regla anti-lógica o anti-intuición es lo que basta para distinguir un conjunto finito de uno infinito.

Los conjuntos infinitos son exclusivos porque en ellos nuestra “lógica humana” no funciona adecuadamente.

Las reveladoras líneas anteriores son las que dotan de auténtico valor a la sentencia de la Presidenta: “Madrid es España dentro de España” porque lejos de ser una falsedad, el auténtico sentido de la frase es enorme:

Madrid y España son ambos infinitos. Sólo así puede ser que una parte sea como el todo.

Aún más, la escueta frase de la política es una rigurosa definición de Madrid, y por ende de España, nada menos que como conjuntos infinitos: la Presidenta podría firmar un teorema que dijera: “España es infinita y tiene en su interior a Madrid que también lo es”.

Aún así, nos quedaría pendiente por determinar si la garantizada infinitud de Madrid es del mismo tamaño que la infinitud de España. Seguro que en breve la Presidenta encontrará respuesta para ello.


[1] Este problema le surgió a Galileo al comparar la serie de los números enteros y la de los cuadrados perfectos.